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ABSTRACT

SLIAR-model of epidemic of acute respiratory disease has been considered.
There have been obtained the conditions of local stability of stationary state
corresponding to the absence of disease. Consideration has been also given to
the model of coexistence of two virus strains for which there are presented
stability conditions for three stationary states. Stability conditions are expressed
in terms of virus reproduction rates.
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Introduction

Influenza and acute respiratory diseases remain one of the most urgent medical and social problems
due to their high sickness rate, risk of complication development, acute attacks of chronic disease and as
result — lethality [1, 2]. Hence, of urgency is the development of adequate models of epidemic spread.
The challenge of model construction is connected with a large number of factors which affect the
development of epidemic process. Construction of new models is related to selection of one or other
leading factors.

The works [3-5] have presented the review of SIR-models which are traditionally applied in
mathematical epidemiology and whose construction has been studied in numerous works. At the same
time less consideration has been given to the matter concerning stability of SIR-models, which, as a rule,
refer to the class of nonlinear ones.

Hence, the goal of this work is the construction of design conditions of asymptotic stability in SIR-
models of epidemic of acute respiratory disease.

Investigation of SLIAR-model

Let N be the size of the considered human population. It is assumed constant, i.e., over the time of
epidemic being considered (as a rule, it takes a couple of months) a mortality due to disease does not
affect the size of population, and the influence of natural mortality p is covered by the birth rate, i.e.,

0=N’"=uN —uN.

We analyze the following compartments which correspond to such subpopulations: § — susceptible,
L — latent, / — infected, 4 — asymptotic, R recovered persons. Hence, we have the diagram of transition
states (Figure 1).

On its basis we consider the model

S’ =uN — SB(I + 84) — S,
L'=SB+84)—(u+x)L,

I'=pxL-(u+o)l, (1)
A'=(1-p)xL—(u+m) 4,
R'=ol+nA-UR.

The equation for R in the system (1) can be eliminated since for any ¢

S(6)+ L(t) + () + A(t) + R(f) = N = const.

Figure 1
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Hence, as the basis model we consider the model

S =w(N —S8)-SB(I + 84),
L'=SB(I +84)— (u+x)L,
I'=pxL—(u+o)l,
A'=(1-p)KL—(n+m) 4.

(@)

Note, that in terms of biology the significant domain Q ={(S, L, I, A) e Ri| S+L+I+A4A<N} is

positively invariant for the system (2) since the vector field on the boundary of Q does not go outside Q.

To analyze the equilibrium points of the system (2) we introduce the parameter, i.e., — the
reproduction rate
3(1-p)
R, :B{£+—p . 3)
o n

Its biological content consists in the fact that a latent person upon hitting a population of S
susceptible persons will become infected with probability p (in this case it will cause BSy/o infections
over the infection period of duration 1/a) or will become asymptotic with probability 1— p (in this case
it will cause SBSO/n infections over the asymptotic period of duration ).

We will find the equilibrium states of system (2) which belong to the boundary of domain Q:

W(N = 8)—SB( +64)=0,
SB(I +84)—(u+k)L =0,
PkL—(L+0) =0,
(I-p)kL—(u+n)A=0,
S+L+1+A4=0.

This implies Ey = (N, 0,0,0) — the stationary state which corresponds to the absence of disease.
W@ —-3-p) ]

on
Theorem 1. At Ry <R, E, is locally asymptotically stable in Q.

We introduce the notation R; = B(

Proof. Jacobian of the system (2) has the form

—u—B( +84) 0 -Sp —SBS
| BU+sH)  —@rw) S5 Sgd
DF(E)= 0 Pk  —(u+o) 0 ’
0 (1-p)x 0 —(u+m
—u 0 _NB —NBS

0 —(u+x) NB NBS
0 pK —(L+o) 0
0 (I-px 0  —(u+m)

The eigenvalues of DF(E,)) represent — L and the roots of polynomial

i.e., DF(Ey)=

A(z) = 2 +a122 +ayz+as,
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where
a; =K+n+o+3,

ay =om—pxNB+2uo+ kNBdp + kn+ 0L+ 32 + 2um + 2K — KNBS,
a3 = xom + KNPSO — kNP3 — prABW + 1”0 — pkNBN — kNBSeL + ki +

+ KNBopa +u20c +u3 + KoL + Lo + KU,

According to Routh—Hurwitz criterion in order that the real parts of roots of the polynomial be
positive it is necessary and sufficient that the condition

a >0, as >0, aja, —as >0

be fulfilled.
We have
a2:0m—1<N|3(p—8p+8)+2u(x+m+Koc+3u2+2;m+21<u:
:an+KNﬂ{B(MH+2ua+m+Koc+3u2+2m]+21<u:
u om
_ om 2
=om + kKN —R; + 2u0 + kN + KoL+ 3 + 2un + 2.
u
Since
P o(- + dou(l— +Bda — Bdoy
9‘0=B[—+ ( p)}:Bpn (1=p) _ Bpn+pdo.—pdop
o n on on
we obtain

a3 = xom + KN (Budp — Bud — Bup) + p’n — kN (Bpn + Bdo — Pdap) +
2 2 3 _
+ KU+ o+ W+ Ko + pom 4 Kun =

= Kom + KNBR(3p — 8- p) + 11— kNB(pN + dor — darp) +

+xpu? +p 2o+ + o + pom + eun = kom + KNomB(
onm

u(6p—8—p)J+

+un- KNomB[R+MJ+ K;,LZ +u2au3 + KOIWL + Lo + Kun =
o n

=KN(XT]{I3[M(SP;—118_')))—9‘O}+K(W+H2“+ wu? +pla=

=u3 + KoL + pom + xun = kNom (R, — Ry 1+ xom +

+ 2+ Fpl o Ko+ o + kun,
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If Ry <R, then the coefficients of A(z) are positive. We cam also verify that aja, > as.
According to Routh—Hurwitz criterion the roots of A4(z) have negative real parts if Ry < R;.
The theorem has been proved.

The model of existence of two influenza strains

The model is assigned for describing a spread of various virus strains (for example, pandemic and
seasonal influenza). In the model there are made the assumptions:

1) compartments of latent persons are not considered;

2) influenza spread is assumed to be necessarily accompanied by the symptoms, i.e., the absence of
compartments of the asymptotically infected;

3) a general size of population N is considered constant.

Hence we consider the diagram of transition states (Figure 2).

ol _GofaRoly

Figure 2

Here we have compartments that correspond to such subpopulations: S — susceptible, /; —
infected by the first virus strain, /, — infected by the second virus strain, R; recovered after the first
virus strain, R, recovered after the second virus strain, Y| reinfected, (but now by the first strain), Y,

reinfected (but now by the second virus strain), R — recovered after being twice infected.
On its basis we have the system

§' = (N =)~ (B11, +B212) S,
I'=B;SI; —(u+o,) I, i=1,2,
R =oyl;—(W+0 B,I )Ry iy j=1,2, i # ], @
Y=ofR;1;—(u+0,)Y; i, =12, i #j,
R'= oY) + 0¥, —pR.

Since for any ¢t S+1;+I,+R +Ry+Y;+Y, +R=N, then in the last equation of (4) R can be
eliminated and then we will have the following epidemiological system:

S'=w(N=8)=Bi; +B212) S,
I} =B;Sli —(u+0y) 1,
Ri=o;l; —(u+oB;1,)R;,
Y/=08;R1;—(u+0,)Y;.

6))

Here i, j=1,2, i#j.

63



The biologically significant domain for (5) represents
Q={(S,11,1,,R, Ry, Y], 1»)e Rz| S+ +I,+R+Ry+Y +Y, <N}

Note, that Q is positively invariant for the system (5) since the vector field on the boundary of € does not
go outside of Q.

We will determine the equilibrium states of the system (5) that belong to the boundary of Q from the
system of algebraic equations

WN =8)=(Bif; +B212) S =0,
BiSl;—(u+o0y)1; =0,
ol;—(u+o,B,1,)R; =0,
OB;R;1;—(u+0,)Y; =0,
i j=12, i %]

We have three equilibrium states

Ey=(N,0,0,0,0,0,0),
E; =(S{, 17,0, R/, 0,0,0),

E, =(S5,15,0, R, 0,0).
Here

sy =Mt 11*=H(Nl31—u—0€1) R1*=0C1(Nl31—ll—0€1)
B Biu+oy) Prn+ay)

s3 Bt o BBy —u-ap) e (VB —H-0h)
By Ba(utoy) Ba(u+ai)

Having denoted the basic reproduction rates

9{1: B]N ,E)Kzz BZN ,
w+ay W+l

we have

* N * o w0

Sp=— Iy == =D, Ry == (% -1),
Ry P B
N « U Oy

Sy=—— I == Ry =D), Ry =2 (R -1).
Ry P2 B2

The equilibrium states in terms of epidemiology can be treated as follows: E,; — the absence of

disease; E; the presence of strain 1 alone; £, — the state of the presence of strain 2 alone.
Stability of equilibrium states in the model of coexistence of two influenza strains
Denote Ry =max{R;, R,}. If Ry <L, then E, is the unique equilibrium state in Q. If Ry >1,

then either £ or £, or both of them belong to €2.

64



We will investigate the stability conditions of equilibrium state which corresponds to the absence of
disease.
Theorem 2. If R, <1, then E, is locally asymptotically stable in Q. If Ry >1, then E; is the

saddle point.
Proof. Jacobian of the system (5) has the form

[W=Bify~Bals  —BiS —BaS 0 0 0 0
Bl  —BS—u—o 0 0 0 0 0
B/, 0 BS—p—0y, 0 0 0 0
DF(E) = 0 oy —0BRy —n-0aPalp 0 0 0 |
0 —o1BiRy (¢5) 0 —u-opify O 0
0 o1BiRy 0 0 ofiy -u-oq O
L 0 0 o2B2 Ry 02B21) 0 0 -p-oy |
i i (6)
BN BN 0 0 0 0
0 BN —p-0y 0 00 0 0
0 0  BN-p-o0, 0 0 0 0
DF(Ey)=| 0 o 0 -u 0 0 0
0 0 oy 0O -u O 0
0 0 0 0 0 —p-o; 0
0 0 0 00 0 -p-a)

DF(E;) has ecigenvalues: —p (of multiplicity 3), —(u+0y), —(u+ay), BN-p—o; =
BaN —p—0p =(n+0n)(R;y - D).

Hence, E, is locally asymptotically stable if Ry <1 and is the saddle point at Ry > 1.

Theorem has been proved.

We will investigate the stability of equilibrium states E;, u=1,2. At R;>1 the equilibrium state
E; is in Q. Its stability is determined by Jacobian of the system (5) at this point:

w-Bify  -BiST -B2s; 0 0 0 0
Bili  —BiSi—n-oy 0 0 0 0 0
0 0 B,S; —u—0oy 0 0 0 0
DF(E)=| 0 o -0,BR - 0 0 0 |
0 ~GiBiR] ) 0 —pu-ofy 0 0
0 0 0 0 oBylf -p-o4 O
|0 0 B8R 0 0 0 —p-oy)

which has the eigenvalues
A== Ay =—(U+A), A3 =—(U+A2), Ay :—HLHM —g—z(w%l)ﬂ,
1

}\«5 :—u|:1—01 +Bl—N+OC1:|:—M[g(1 +1—Gl]
U
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and the roots of polynomial
u
n+oy

A(2) =27 +uR 2+ Ryp(u+oy) - (of +2u0y +pf) =

=27 Rz + Ry + o) —p(+ o) = 27 +pRyz+ i+ oK, —11.

It is obvious, that A4 <0 if Ry >R,. Inits turn A5 <0 if Ry >0 -1.
According to Routh— Hurwitz criterion the roots of polynomial 4;(z) have negative real parts if and
only if R, >1. Thus, on the whole we have the result.
Theorem 3. E; is the locally asymptotically stable state of the system (5) if R; > max{l, 6] —1}
and the inequality
Ry <Ky @)
holds true.
If the inequality (7) does not hold, then Ej is unstable.
Since the system (5) is symmetric with respect to strains of viruses 1 and 2, then we obtain the
analogous result for the equilibrium state £,
Theorem 4. E, is locally asymptotically stable state of system (5) if R, > max{l, 6, —1} and the
inequality
R, <R, ®)
holds true.
If the inequality (8) does not hold, then E, is unstable.
Since for R; = max{l, 5; —1} the inequalities (7) and (8) cannot hold true simultaneously, then E,
and E, cannot be locally stable for the same values of the system parameters. Figures 3, 4 depict the
domains of existence and stability of equilibrium states E;.

R, A R, 4
E2 E2 -
// ////
//// ////
//// Oy -1 P /_//
//// ////
i
lp=—-- 7 I I £
| | |
E, ! Ey | I
| > 1 | | >
1 g{l 1 (o)) -1 9(1
Figure 3 Figure 4

Example. Consideration is given to the system (5) with the values of parameters
N =10° pn=0.005 B;=04-10, B, =03-10"
oy =0.1428, o, =0.1428, 6;=1, 0, =1.
In this case we have
—6 105
g _ BN __4 1(3) 100 _ 04 o0
W+oy  5-107°+0.1428 0.1478
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BN 3:10%.10° 03

R, = - — -
W+,  5.107340.1428 0.1478

=2.0298,

ie., Ry >R, and all conditions of Theorem 3 are fulfilled. Results of numerical modeling of the system
(5) are depicted in Figure 5-11.
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Numerical integration shows the local asymptotic stability of stationary state Ej.

Conclusion

Hence, the paper in question has studied the matter of stability of SIR-models of epidemic of acute
respiratory virus infections (the most common example is an influenza epidemic). While considering
SLIAR-model of one strain influenza epidemic there was introduced the concept of epidemic
reproduction rate which shows a probable number of infections that might be caused by a person. The
analogous concepts were introduced in the models of coexistence of two virus strains. It is worth noting,
that the obtained stability conditions have explicit biological sense. The necessary condition R; >1

points at the necessity to retain the same number of infected persons so that a stationary state of the
presence of the constant level of the ith virus strain would be stable. The condition R; >R ; indicates

the prevalence of epidemic spread for the ith virus strain over the jth one that leads to the stationary state
of presence of the ith strain alone.
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